Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells.

نویسندگان

  • Elena Favaro
  • Karim Bensaad
  • Mei G Chong
  • Daniel A Tennant
  • David J P Ferguson
  • Cameron Snell
  • Graham Steers
  • Helen Turley
  • Ji-Liang Li
  • Ulrich L Günther
  • Francesca M Buffa
  • Alan McIntyre
  • Adrian L Harris
چکیده

Metabolic reprogramming of cancer cells provides energy and multiple intermediates critical for cell growth. Hypoxia in tumors represents a hostile environment that can encourage these transformations. We report that glycogen metabolism is upregulated in tumors in vivo and in cancer cells in vitro in response to hypoxia. In vitro, hypoxia induced an early accumulation of glycogen, followed by a gradual decline. Concordantly, glycogen synthase (GYS1) showed a rapid induction, followed by a later increase of glycogen phosphorylase (PYGL). PYGL depletion and the consequent glycogen accumulation led to increased reactive oxygen species (ROS) levels that contributed to a p53-dependent induction of senescence and markedly impaired tumorigenesis in vivo. Metabolic analyses indicated that glycogen degradation by PYGL is important for the optimal function of the pentose phosphate pathway. Thus, glycogen metabolism is a key pathway induced by hypoxia, necessary for optimal glucose utilization, which represents a targetable mechanism of metabolic adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeting glycogen metabolism: a novel strategy to inhibit cancer cell growth?

Metabolic reprogramming in cancer cells provides energy and important metabolites required to sustain tumor proliferation [1]. In our recent paper in Cell Metabolism, we demonstrate that glycogen mobilization is a common feature of cancer cell metabolism, and may therefore represent a novel anticancer therapeutic target [2]. Glycogen primarily acts as an intracellular storage of glucose and ful...

متن کامل

Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide).

Glycogen in the brain is localized almost exclusively to astrocytes. The physiological function of this energy store has been difficult to establish because of the difficulty in manipulating brain glycogen concentrations in vivo. Here, we used a novel glycogen phosphorylase inhibitor, CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-ca...

متن کامل

FOXQ1 regulates senescence-associated inflammation via activation of SIRT1 expression

Cellular senescence is an initial barrier to tumor development that prevents the proliferation of premalignant cells. However, some of the features of senescent cells seem to promote tumor progression via senescence-associated secretory phenotype (SASP). Here, we demonstrated that the protein level of forkhead box Q1 (FOXQ1), which highly overexpresses in several kinds of tumors, was significan...

متن کامل

Glucose-6-phosphatase is a key metabolic regulator of glioblastoma invasion.

UNLABELLED Glioblastoma (GBM) remains the most aggressive primary brain cancer in adults. Similar to other cancers, GBM cells undergo metabolic reprogramming to promote proliferation and survival. Glycolytic inhibition is widely used to target such reprogramming. However, the stability of glycolytic inhibition in GBM remains unclear especially in a hypoxic tumor microenvironment. In this study,...

متن کامل

Effects of alpha-mangostin on memory senescence induced by high glucose in human umbilical vein endothelial cells

Objective(s): Hyperglycemia induces cellular senescence in various body cells, such as vascular endothelial cells. Since the vessels are highly distributed in the body and nourish all tissues, vascular damages cause diabetes complications such as kidney failure and visual impairment. Alpha-mangostin is a xanthone found in mangosteen fruit with protective effects in met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell metabolism

دوره 16 6  شماره 

صفحات  -

تاریخ انتشار 2012